Extrapolating potential energy surfaces by scaling electron correlation: isomerization of bicyclobutane to butadiene.
نویسندگان
چکیده
The recently proposed potential energy surface (PES) extrapolation scheme, which predicts smooth molecular PESs corresponding to larger basis sets from the relatively inexpensive calculations using smaller basis sets by scaling electron correlation energies [A. J. C. Varandas and P. Piecuch, Chem. Phys. Lett. 430, 448 (2006)], is applied to the PESs associated with the conrotatory and disrotatory isomerization pathways of bicyclo[1.1.0]butane to buta-1,3-diene. The relevant electronic structure calculations are performed using the completely renormalized coupled-cluster method with singly and doubly excited clusters and a noniterative treatment of connected triply excited clusters, termed CR-CC(2,3), which is known to provide a highly accurate description of chemical reaction profiles involving biradical transition states and intermediates. A comparison with the explicit CR-CC(2,3) calculations using the large correlation-consistent basis set of the cc-pVQZ quality shows that the cc-pVQZ PESs obtained by the extrapolation from the smaller basis set calculations employing the cc-pVDZ and cc-pVTZ basis sets are practically identical, to within fractions of a millihartree, to the true cc-pVQZ PESs. It is also demonstrated that one can use a similar extrapolation procedure to accurately predict the complete basis set (CBS) limits of the calculated PESs from the results of smaller basis set calculations at a fraction of the effort required by the conventional pointwise CBS extrapolations.
منابع مشابه
Valence isomerization of 2-phospha-4-silabicyclo[1.1.0]butane: a high-level ab initio study
The rearrangements for 2-phospha-4-silabicyclo[1.1.0]butane, analogous to the valence isomerization of the hydrocarbons bicyclobutane, 1,3-butadiene, and cyclobutene, were studied at the (U)QCISD(T)/6-311+G**//(U)QCISD/6-31G* level of theory. The monocyclic 1,2-dihydro-1,2-phosphasiletes are shown to be the thermodynamically preferred product, in contrast to the isomerization of the hydrocarbon...
متن کاملGas-phase synthesis of the benzyl radical (C(6)H(5)CH(2)).
Dicarbon (C2 ), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas-phase synthesis is presented of the benzyl radical (C6 H5 CH2 ) by the crossed molecular beam reaction of dicarbon, C2 (X(1) Σg (+) , a(3) Πu ), with 2-methyl-1,3-butadiene (isoprene; C5 H8 ; X(1) A') accessing the triplet and singlet C7 H8 potential energy surfaces (PESs)...
متن کاملScanning Reactive Pathways with Orbital Biased Molecular Dynamics.
To accelerate reactive events in molecular dynamics simulations we introduce a general bias potential scheme which depends only on the electronic degrees of freedom of the reactive system. This electronic reaction coordinate, which is expressed in terms of a penalty function of the one-electron orbital energies, has been applied to study different reaction pathways of s-cis-butadiene. Three dif...
متن کاملMechanism and Rate Constants for 1,3-butadiene Decomposition
Data on the decomposition of 1,3-butadiene have been analyzed. The numerous isomerization processes that have recently been proposed as additional channels for decomposition have been considered. Energy transfer effects have been taken into account through the solution of the time-dependent master equation. We confirm recent supposition that direct formation of ethylene and acetylene is a major...
متن کاملThe limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.
Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scalin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 128 15 شماره
صفحات -
تاریخ انتشار 2008